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ABSTRACT The theory of spin glasses was used to study
a simple model of protein folding. The phase diagram of the
model was calculated, and the results of dynamics calculations
are briefly reported. The relation of these results to folding
experiments, the relation of these hypotheses to previous
protein folding theories, and the implication of these hypoth-
eses for protein folding prediction schemes are discussed.

The mechanism of globular-protein folding remains a central
problem of molecular biology (1). Folding is the final stage in
the translation of genetic information to a working protein
and is one of the simplest examples of biological self-
organization. A complete understanding of protein folding
should lead to a scheme for predicting three-dimensional
protein structure from one-dimensional sequence informa-
tion, which would have important applications in biotechnol-
ogy. Even falling short of a complete theory, there are many
puzzling features of the kinetics and thermodynamics of
protein folding that require qualitative explanation. In this
paper we hope to highlight these features and to explain how
some hypotheses drawn from the theory of spin glasses can
illuminate some features of protein folding in a very simpli-
fied model.

Physicochemical studies of protein folding have a long
history (1-5). Despite these studies, a unified account of the
dynamics of the process has failed to arise. Thermodynam-
ically near physiological conditions the smaller proteins often
exhibit all-or-none behavior, going discontinuously from the
unfolded phase to the folded phase. This is reminiscent of a
phase transition in a finite system (5). In larger proteins,
deviations from this behavior have been ascribed to the
domain structure of proteins. Farther away from physiolog-
ical conditions more complex behavior has been observed,
suggesting that a third "misfolded" or "collapsed" phase for
protein molecules exists.
The kinetic behavior of protein folding is more complicated

than the thermodynamic behavior. Generally multiexponen-
tial kinetics is observed and in some cases discrete interme-
diates inferred (6). The range of time scale is puzzling.
Refolding of denatured protein into a biologically active form
takes 1 msec to 100 sec or longer. This period of time may be
viewed in two different ways. On one hand the time is much
too short for an exhaustive random search for the minimum
free-energy structure; on the other hand it is clearly much
longer than a simple "downhill run" to the minimum free-
energy structure. Nucleation models suggested by the all-or-
none character of the thermodynamics also do not fit the
kinetics.

In the absence of microscopic models the solution of the
time-scale problem has been attributed to the existence of
"folding pathways." The relative slowness of folding is
ascribed to the existence of many local minima of the free
energy (7).

We should also bear in mind that the in vivo studies of
folding may give a biased view of the biological process.
Robust, easily foldable proteins are the easiest to study. In
vivo, some proteins may fold sequentially following their
synthesis on the ribosome, so that the search for a thermo-
dynamic equilibrium may be too slow to be relevant. Occa-
sionally irreversible denaturation that is not ascribable to
aggregation is observed (2). In addition the speculative
concept of "protein drift" has been introduced to explain
aging of proteins (8-11) and to explain unusual cooperativity
observed in some cases of oligomer association (12). Time
dependent free energies of folding were postulated by Xu and
Weber (12) to analyze this cooperativity.
Many of the issues raised in the preceding paragraphs are

similar to issues in the statistical mechanics of glasses and
glass transitions. For example we often think of crystalline,
liquid, and glassy states of simple material. Clearly in the
glassy state many different free-energy minima can coexist
and interconvert. The properties of glasses can be dependent
on the history oftheir preparation, and in the glassy state very
slow aging processes occur.
The relevance of the application of theories from glass

physics to the dynamics of completely folded proteins has
already been discussed (13, 14). These dynamics involve the
motion of residues over small distances on the order of0.1 to
1.0 A. Folding dynamics occur on a larger length scale from
a few to tens of angstroms. Thus a rather "coarse-grained"
Hamiltonian should suffice to describe the overall features of
folding. Some coarse-grained descriptions are familiar in the
Ising model descriptions of the various secondary structure
transitions such as the helix-coil transition in polymers (15).
We use a similar description here. In folding, however, the
establishment of tertiary structure requires interaction of
residues that are distantly separated along the sequence. In
addition, the heterogeneity of the amino acid sequence
implies a complicated form for the coarse-grained Hamilton-
ian. Despite this complexity a low-energy structure in which
secondary and tertiary structural features are all in harmony
exists. We will argue here that these features of the interac-
tions can be captured by a many-state spin glass model with
random and ferromagnetic interactions, and we will use a
random-energy approximation to calculate the equilibrium
properties of our model.
We will also briefly comment on folding dynamics, partic-

ularly on the existence of intermediates. To conclude we
discuss our results in relation to the experimental results and
to other theories ofprotein folding, such as the nucleation and
diffusion-collision models. We also comment on the rela-
tionship of our model and of spin glass theories in general to
protein-folding prediction schemes.

THE MODEL AND ITS PROPERTIES
Protein folds may be represented by specifying the three-
dimensional conformation of the polypeptide backbone
(16-18), and the backbone is usually described by listing two
dihedral angles per amino acid residue. Some careful exper-
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imental work by Brandts (19) has shown that the entropy loss
of the chain from folding is about 5.1 cal/molK residue* (1
cal = 4.184 J); so, if we consider the folded structure to be a
single state, then the unfolded protein has =10 states avail-
able to each residue. These results suggest a coarse-grained
model where the gross protein conformation is described by
listing the discrete conformational state of every amino acid
in the chain with every amino acid having one native
conformation and v other conformations (v is on the order of
10).
The examination of successfully folded proteins leads to an

important general feature of a model Hamiltonian to describe
folding. The folded structure is very compact, and the
secondary and tertiary structures are not in conflict. Super
secondary structures accommodate both local hydrogen
bonding and packing requirements. If it were not for this
relative lack of frustration in final, folded structures, sec-
ondary-structure prediction schemes would fail spectacular-
ly. This feature was used extensively by Go in his models of
folding (5), and we make use of it also. We call it the principle
ofminimal frustration. There are several kinds of interactions
in protein folding. First, there is an energy associated with the
state of each amino acid residue that we call -ei(a1), where
i refers to the amino acid under consideration and ai refers to
the state of the ith amino acid. Second, there are interactions
along the chain, e.g., hydrogen bonding in a-helices. We will
use the standard approximation of taking this interaction to
be between nearest-neighbor residues (15), so we may write
the energy of each bond of this type as -J,,+1(a,, aj+1).
Finally, there are the long-range interactions, i.e., interaction
between residues that are far apart along the chain. These
occur when bends in the chain bring two amino acids close
together, e.g., by hydrophobic forces. We will write their
energies -Kjj(a1, aj, ri, rj), where ri is the position of the ith
residue.
We may write the energy of the protein as

E =->Ei(ad)-> Juj+1(aj, ai+,)

-Z Kjj(a,, a>, ri, rj). [1]
ij

Naively, we may view the ei(a,) as being related to the
primary structure, the Jij+1(aj, ai+1) as being responsible for
the secondary structure, and the Kej(aj, aj, ri, rj) as being
responsible for the tertiary structure. We will label the (v +
1) discrete states of each residue with the integers 0 through
v. We will always label the properly folded, native state of a
residue with zero. We call the interaction between two
native-state residues a native interaction. All other two-
residue interactions are called nonnative.
Suppose that we are given a molecule of a particular

protein with N amino acids that is in a specific conformation
with No amino acids in their native state. The energy of this
molecule is given by Eq. 1, an exceedingly complex function
of {ai} and {r,}. The traditional application of statistical
mechanics to an ensemble of these conformations results in
a relatively intractable problem. We will make progress with
an indirect method. Our strategy is to replace a complex
Hamiltonian with a stochastic one that has the same statis-
tical characteristics, i.e., we study the distribution ofenergies
associated with different microstates. This idea is reminis-
cent of Wigner's use of random matrices to describe the
highly excited states of heavy nuclei (20). We will take the
energy of the protein molecule to be a random variable
assigned from a distribution P(E, No), whose statistical
properties have some of the same characteristics as the

distribution of energy levels that arises from the Hamiltonian
in Eq. 1. Random energy levels have been used by Derrida
(21, 22) to study spin glasses, and our work uses many of his
results. A spin glass is a magnetic system where ferromag-
netic and antiferromagnetic bonds are randomly distributed
(23-25). The connection between Derrida's work and more
traditional methods of statistical mechanics has been dis-
cussed in the context of spin glasses by Gross and Mdzard
(26). Our model differs from conventional solid-state spin
glasses where disorder is fixed on a lattice, because in our
case the complex sequence is free to move in space. We will
assume that the energies of different protein conformations
are uncorrelated. Mathematically this means that the joint
probability distribution for n configurations with No native
residues and energies E1, E2, ... , En is given by P(E1,
E2, ..* , E, No) = H7,=1 P(Ei, No). This assumption is an
approximation, and Derrida has shown (21, 22) that it
reproduces the phase diagram of an infinite-range spin glass
with qualitative accuracy. We call this approximation the
random-energy approximation. The random-energy approx-
imation is clearly reasonable for protein folding because
changing a single amino acid state will bring very different
parts of the chain together. This approximation may be
systematically improved by taking account of pair correla-
tions, triplet correlations, etc., among the energies. Derrida
and Gardner (27, 28) have already shown how the approxi-
mation may be extended to include pair correlations. Now we
return to our protein molecule and use Eq. 1 to estimate the
probability that it has energy E. First, we consider the tertiary
structure terms, i.e., the {Kij}. The forces responsible for
these interactions are fairly short ranged, so we will assume
that they are significant only for residues that adjoin each
other in space. Typically each residue will be neighbored by
z other residues that are distant from it along the sequence.
The parameter z will vary slightly with the degree of folding,
and we will take z to be on the order of 2 or 3, which is
between the value of z we expect in the completely unfolded
and the completely folded states. The nonnative interactions
of these adjoining residues will have a distribution of energies
with mean -K and standard deviation AK. The native
interactions must satisfy the principle of minimal frustration,
and the simplest way to ensure this is to set all native tertiary
interaction energies equal to -K where K> K. Similarly we
take the nonnative secondary-structure interaction energies
to be distributed with the mean -J and the standard deviation
AJ, all native secondary-structure interaction energies to
equal -J, nonnative primary-structure energies to be distrib-
uted with the mean -E and the standard deviation AE, and all
native primary-structure energies to equal -7o, where J >
J and so > E. Finally we will assume that the native and
nonnative residues are distributed randomly throughout the
protein. This is equivalent to the mean-field approximation
that has been successfully used to describe the behavior of
numerous many-particle systems (29, 30), e.g., the Flory
theory of polymer solutions (31). Now the stochastic incar-
nation of the Hamiltonian of Eq. 1 is a sum of random
variables with known probability distributions so P(E,NO) is
a Gaussian with the mean

EDNO (N-N) -(N-NoW-NoNO)-(N- )-jL,[2]
NI

where L = J + zK, L = 1 + zK, and the standard deviation

AE(No) = [(N - No)Ae2 + (N -)ALj2

where AL2 = AJ2 + zAK2.

[3]*The quoted entropy takes into account only the entropy loss of the
degrees of freedom of the chain and applies only to residues that go
from an unfolded to a folded state.

Biophysics: Bryngelson and Wolynes



7526 Biophysics: Bryngelson and Wolynes

Now we study n(E), the density of energy levels. E.
specific protein has its own n(E) function. Summing over
values of No, we obtain the average (n(E)).

N

(n(E)) =Z C(No)[2jrrE(No)2]-112
NO=O

x expi- [E - E(No)f
2AE(NO)2

where

C(No)- N! RN-No0 No!(N - No)!

Next, by substituting Eq. 8 into Eq. 6, we obtain the entropy
per residue s as a function of temperature,

s = -p log p - (1 - p)log(1 -

_ AE2 + AL2 - Ae2p - AL2p2
2T2

[4] Finally, the free energy per residue f is
_ AE2 + L2 (f = -e - - - - E - E -

2T

[5]

is the number ofprotein states with No residues in their native
state. In the thermodynamic limit (N -a oo) the behavior of
this sum may be obtained by looking at the largest term. We
find

log(n(E))

= N max{-p log p - (1 - p)log(1 - p)log( )
O<p<l, V

[E + E + L + (Eo - E)p + (L - L)pT]
2[AE2 + AL2 - AE2p - AL2p2] J

max S(E, p), [61
O<p<l

where E is the energy per residue, p = NO/N, S is given a
physical interpretation below, and we are ignoring terms of
order log N. The statistical independence of energy levels
implies that the fluctuations of n(E) about (n(E)) are of order
(n(E))112, so if (n(E)) is large, then

log n(E) log(n(E)). [7]

Our system has two critical energies, a very low energy,
E1, and a very high energy, E2. If E1 < E < E2, then
(1/N)log(n(E)) is positive, so the average number of
microstates with energy E is very large, and Eq. 7 is valid. If
E < E1 or E > E2 then (1/N)log(n(E)) is negative so the
average number of microstates with energy E is <<1. Eq. 7
is not valid in this regime. In the thermodynamic limit the
equilibrium entropy of the chain as a function of its energy is
the maximum value of S(E, p) for E1 < E < E2, and there are
simply no microstates for E < E1 and E > E2. For a system
with fixed energy, the equilibrium state of the system is the
state that maximizes the entropy (32), so we may interpret
S(E, p) in the entropy of the chain for general E and p. [As
long as (1/N)log(n(E)) is positive.] However, for most
purposes it is much easier to work with fixed temperature.
Therefore, we will calculate the Helmholtz free energy as a
function of temperature (T) and p, and then minimizing the
free energy for fixed Twill have the same physical content as
maximizing S(E, p). First, we use the well-known relation 1/T
= aS/OE with Eq. 6 to obtain the energy per residue as a
function of temperature,

E = -(i + L) - (As2 + AL2) ( A)2)

-(L-L- 42) 2. [81

[91

Ae2
2T)

- (L - L - 4-_ p2 + Tp log p
(1 - g2T(

+ T(1-p)log() [10]

For high temperatures the entropy per residue is approx-
imately log(1+ v). As the temperature is lowered the entropy
decreases until a critical temperature given by

[A2+AL2_Ae2p _L2p2 11/2
T 2=2[-p log p -(1- p)log( ;)]j [11]

is reached. Below this temperature the entropy of the chain
is zero, because it is trapped in one of its low-energy states
(21, 22, 26). We will call this low-temperature phase the
"frozen phase." Further lowering of the temperature does
not change the properties of the chain, because it remains
frozen in one microstate. This sudden freezing is a property
of the random-energy approximation. Taking pair correla-
tions ofthe energy levels into account leads to a more gradual
freezing (27, 28). The physical nature of the frozen phase has
been made clear by Gross and Mezard (26), who studied a
spin system that could be solved exactly with the random-
energy approximation. The main conclusions of their study
are known to be valid for many disordered systems. They
found that for T < To the system freezes into one of its many
free-energy valleys so that the frozen phase is a kind of glass.
In the context of our paper this means that if we consider a
solution of many identical protein chains, then in the frozen
state each chain has a definite (nonnative) conformation, but
not all of these conformations are the same.
Our model has three kinds of phases. There is a disordered

phase where any conformation may be found in a solution of
many protein molecules. There is an ordered phase where all
protein molecules tend to be in the native, folded state.
Finally there are glassy phases where the protein molecules
tend to be in a few nonnative states. We show a typical slice
of the phase diagram in Fig. 1.
The energies responsible for protein folding are on the

order of T per residue, so we expect the energy parameters
in Eq. 10 to be about the same order of magnitude. A free
energy function with reasonable characteristics is obtained
with these values, e.g., (eo - - Ae2/2T) = -0.2T, and (L
- L - AL2/2T) = 2.6T. The folded phase is favored by
-0.07T per residue and -75% of the residues participate in
folding. This is in harmony with experimental work (19).
We briefly report the results ofsome simple calculations on

the dynamics of our model. We will present the details
elsewhere. We used an activated dynamics, where the
protein changes state by changing one amino acid at a time.
We did not restrict the state-to-state changes in energy
because changing a single amino acid changes the energy of
a protein molecule by a large amount. We found that the
number of metastable states of a protein molecule goes as
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2.0 _ 3.0
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T

FIG. 1. The calculated phase diagram of our model for eo - E =
A, = 2.18T. There are four phases: unfolded; correctly folded; folded
frozen, a frozen phase in which the native structure is favored; and
misfolded frozen, a frozen phase in which the native structure is not
favored. First-order phase boundaries are indicated by solid lines,
and second-order phase boundaries are indicated by dashed lines.

exp(aN)/N where a is on the order of 1. The deeper of these
minima would appear as kinetic intermediates in protein
folding experiments. We also found that the distribution of
rates for escaping the metastable states is approximately
log-normal for high temperatures and becomes very flat and
broad for temperatures <To.

DISCUSSION

The spin-glass paradigm offers a picture for reconciling
cooperativity and diversity in protein folding. In this section
we discuss the current simplified form of the model, the
connection of this picture with some of the previous work on
folding and discuss prospects for the future.
The principle of minimal frustration used in the model leads

to a first-order-like transition from native to random-coil
states. In a finite-size protein, this type of transition is
rounded out into an all-or-none chemical equilibrium (5). The
innovative feature resulting from the model is the frozen
phase. This phase has slow dynamics and is characterized by
a multitude of misfolded states. The frozen phase may play
a role in the irreversible denaturation of some proteins, e.g.,
elastase (2). There is also some evidence for a similar phase
when proteins are put in very unnatural conditions of pH,
temperature, etc. Dolgikh et al. (33) have observed a com-
pact, "molten-globule" state in a-lactalbumin at acid pH, as
have Ohgushi and Wada (34) in cytochrome c.
Although the globule state is not completely frozen (as in

the simplest random-energy model), in some cases long-lived
secondary structural features are found, and proton-ex-
change kinetics is slower than in the random coil. The
microcalorimetry studies of Dolgikh et al. (33) indicate a
more continuous transition than from native structure to
random coil. This is in harmony with the present identifica-
tion with the spin glass where the transition should have no
latent heat. Of course it will be interesting to compare this
picture with the hypothesis that the phase is like polymer
collapse of a homopolymer.
More broadly the model can say something about the

connection between nucleation (35, 36) and diffusion-colli-
sion models (37, 38) of folding. The free-energy surface in
terms of the fraction of native residues has a double-well
structure, since the random coil is entropically favored and
the native structure is energetically favored through the
minimal frustration aspect of the model. Nucleation kinetics
follows if we consider only diffusion on this one-dimensional
surface. The spin-glass aspect of the model suggests, how-
ever, that the distribution of life times involving nonnative

structures can be quite broad thus leading to a picture more
like diffusion-collision models.

Finally the spin-glass perspective may have relevance to
protein-folding prediction. Even when such schemes do not
try to imitate the physical process of folding, they often
involve the optimization of a fitness function combining rules
for both secondary and tertiary structure (39). If the appro-
priate weighting of these rules or if the minimal-frustration
aspect is neglected, the fitness function will have a structure
much like the energy function of spin glasses. Thus locally
guided search for extrema would exhibit the range of slow
dynamics possible in the spin-glass model (4Q). Exploitation
ofthe phase diagram ofthe spin-glass model may lead to ways
around the bottlenecks of such schemes.
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